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Abstract

Sentence production is the uniquely human ability to transform complex thoughts
into strings of words. Despite the importance of this process, language production
research has primarily focused on single words. It remains an untested assumption
that insights from this literature generalize to more naturalistic utterances like
sentences. Here, we investigate this using high-resolution neurosurgical recordings
(ECoG) and an overt production experiment where patients produce six words in
isolation (picture naming) and in sentences (scene description). We used machine
learning models to identify the unique brain activity pattern for each word during
picture naming, and used these patterns to decode which words patients were
processing while they produced sentences. In sensorimotor cortex, this procedure
predicted each noun in the order it was said in the sentence, confirming that words
share cortical representations across tasks. However, in inferior and middle frontal
gyri (IFG and MFG), the order in which words were processed depended on
the syntactic structure of the sentence. This dynamic interplay between sentence
structure and word processing reveals that sentence production is not simply
a sequence of single word production tasks. We argue that it is time for the
field to leverage the extensive literature on word production for studying more
naturalistic linguistic constructs like sentences.
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1 Introduction

Many species in the animal kingdom use symbolic forms of communication: dolphins
have names [1], bees dance to signal nectar locations [2], and monkeys and birds
use predator-specific calls to warn of threats [3, 4]. While human lexical (i.e., word)
knowledge is particularly vast, involving tens of thousands of words, the truly remark-
able feature of human language is our ability to combine these words into sentences,
enabling us to express a limitless number of novel thoughts and ideas.

This communicative ability is central to who we are, but remains poorly under-
stood at the neural level. In particular, the neuroscience of sentence production has
been hindered by limitations of traditional noninvasive neural measures, which limit
spatial or temporal resolution and are susceptible to motor artifacts, and by the dif-
ficulty of experimentally controlling what sentences participants say. Due largely to
these challenges, language production research has remained primarily focused on sin-
gle words. This leaves an important gap in understanding how the brain produces
more complex linguistic constructions like sentences. Word production research typ-
ically employs picture naming paradigms where a participant sees a picture of, e.g.,
a dog, and says “dog.” Among the important insights from this work is that words
are not unitary representations. Instead, lexical knowledge involves distinct represen-
tations of a word’s semantic (i.e., meaning) [5], phonological [6], articulatory [7], and
grammatical features [8]. During production, these representational stages are gen-
erally thought to come online in a feedforward sequence, starting with meaning and
ending with articulation (and perception from sensory feedback) [9–11]. Furthermore,
each stage is associated with distinct cortical regions [12, 13], with articulatory plan-
ning in inferior frontal gyrus (IFG) [14, 15]; articulation in sensorimotor cortex (SMC);
feedback in superior temporal gyrus (and visual cortices for sign languages); grammat-
ical features in middle temporal lobe (MTL) [16], and semantics distributed bilaterally
throughout cortex [5].

In contrast to the wealth of knowledge the field has accumulated about single word
production, very little is known about the type of speech that is unique to our species:
sentences [17–19]. While some work has overcome the obstacles to studying produc-
tion with non-invasive neural measures [e.g., 15, 17–27], these studies have largely
focused on differences between comprehension and production rather than drawing on
progress in word production research. One of many open questions regarding sentence
production, then, is whether insights from the word production literature can inform
our understanding of sentence production. Here, we scale up from the neuroscience
of words to the neuroscience of sentences, testing the assumption that what we know
about single words generalizes to more complex linguistic constructs.

To do so, we identify the unique cortical activity patterns that encode six particular
words during a picture naming task. We then ask whether these cortical represen-
tations are the same for words in list and sentence contexts. By recording electrical
potentials directly from the cortical surface in ten neurosurgical patients (ECoG), we
achieve high spatial and temporal resolution and avoid motor artifacts, bypassing limi-
tations of traditional non-invasive neural measures. We employ a controlled production
experiment (Fig. 1A) and sophisticated machine learning techniques, and demonstrate
that words’ cortical representations are in fact shared across tasks. However, the order
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in which these representations are processed by the brain differs depending on the
syntactic structure of the sentence, revealing a dynamic interplay between syntax and
word production processes.

2 Results

We recorded ECoG from ten neurosurgical patients with electrodes implanted in left
peri-Sylvian cortex (Fig. 1B). Patients performed an overt speech production experi-
ment involving the production of the same six words in three tasks: picture naming,
list production, and sentence production. In picture naming trials, patients repeatedly
saw and named six cartoon characters one at a time. To maximize discriminability,
these characters – chicken, dog, Dracula, Frankenstein, ninja, and nurse – differed
along a number of dimensions (phonology, number of syllables, proper vs. common
noun, etc.). During sentence production, patients overtly described cartoon vignettes
depicting transitive actions (e.g., poke, scare, etc.) in response to a preceding ques-
tion. Questions were constructed using either active syntax (“Who poked whom?”) or
passive syntax (“Who was poked by whom?”), implicitly priming patients to respond
with the same structure (“The chicken poked Dracula” or “Dracula was poked by
the chicken”) [28]. Finally, patients completed a list production task, where the same
vignettes as in the sentence production trials were preceded by an arrow rather than a
question, indicating the direction in which participants should list the two characters
in the scene: left-to-right (e.g., “chicken Dracula”) or right-to-left (“Dracula chicken”).
We quantified neural activity as high gamma broadband activity (70 − 150Hz), nor-
malized (z-scored) to each trial’s 200ms pre-stimulus baseline, which correlates with
underlying neuronal spiking and BOLD signal [29, 30].

We began by looking at the mean neural activity for each task in seven regions
of interest (ROIs) which have previously been implicated in word production [12, 13].
Prior to this and subsequent analyses, we followed previous work [31–36] and tempo-
rally warped all trials, setting response times to the median trial duration for each
task (-758ms for picture naming, -1141ms for sentence production, and -801ms for
list production; see Methods and Supplementary Fig. S1). This boosts signal to noise
ratio [34, 36] and tempers extraneous differences. ROIs showed a variety of temporal
patterns (Fig. 1B), with the highest levels of activity across tasks achieved in sensori-
motor cortex (SMC) during articulation. However, not all of this activity reflects word
processing, as various general systems like attention and working memory are also
involved in speech production. Notably, many electrodes showed distinct temporal pro-
files for certain words (Fig. 1C, top). We quantified the amount of evidence for word
specificity in each electrode using Bayesian ANOVAs (Fig. 1C, bottom). This informa-
tion was broadly distributed across cortex, increasing from stimulus onset to speech
onset (Fig. 1D). Figure 1E shows the maximum standardized difference (Hedge’s g)
between each word and all the rest between -750 and 250ms from speech onset. These
networks exclude electrodes with high g-values for more than one word, meaning they
are unique to each word.

To more accurately identify word-specific activity patterns, we performed a series
of decoding analyses [37, 38] on the picture naming data. In essence, this analysis
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Fig. 1 (A) Task design: In sentence production trials, participants described static cartoon scenes
in response to preceding questions. Scenes involved two of the six characters used throughout the
experiment (chicken, dog, Dracula, Frankenstein, ninja, nurse). Half of the questions were manip-
ulated to appear in active syntax (e.g., “Who sprayed whom?”), implicitly priming active responses
(“Dracula hit Frankenstein.”). The other half had passive syntax (“Who was sprayed by whom?”),
priming passive responses (“Frankenstein was hit by Dracula”). In list production trials, participants
saw an arrow pointing to the left, in which case they listed the two characters in the subsequent scene
from right to left (“Dracula Frankenstein”), or to the right (“Frankenstein Dracula”). In picture nam-
ing trials, the six characters repeatedly appeared one at a time and participants responded with a
word (e.g., ”chicken”). (B) We recorded electrical potentials from 1256 electrodes (white dots) placed
directly on the cortical surface in 10 patients. We identified 7 regions of interest (ROIs) in the word
production literature. Line plots show the mean neural activity (z-scored high gamma amplitude)
and standard error per task and ROI, locked to speech onset. (C) A sample electrode: mean activity
per word during picture naming (top) and the amount of evidence (BF = Bayes Factor) for word-
specific information throughout picture naming trials (bottom; calculated with Bayesian ANOVAs
where positive values indicate more evidence for word-specificity). (D) The maximum amount of evi-
dence for word specificity during picture naming in each electrode in the four 150ms windows leading
up to speech onset (t = 0). (E) Cortical networks for each word. Only showing electrodes for which
only one word has a maximum Hedge’s g exceeding 0.3. (Hedge’s g is a standardized difference met-
ric, interpreted like Cohen’s d.)
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(schematized in Fig. 2A) learns the unique pattern of activity for each word in a
“training” subset of picture naming trials (90% of trials). Then, it predicts which of
the six words a patient is saying in each of the withheld “test” trials (10%) by assessing
how similar that trial’s activity pattern is to each of the six learned patterns. If a test
trial’s activity pattern is most similar to, e.g., the “chicken” pattern, the classifier will
predict that the patient said “chicken.” This would be scored a 1 if the patient was
in fact saying “chicken,” and 0 otherwise. By repeating this process for every time
sample in every trial, and for 30 combinations of train and test data parcellations (i.e.,
10-fold cross validation repeated three times; see Methods), we were able to calculate
the mean prediction accuracy over time.

We repeated this analysis for each patient and for each ROI. Additionally, because
words pass through distinct representational stages (e.g., conceptual, phonological,
etc.), the time when the training data came from was consequential. For instance, if
we trained the model on just data from t = 0 (speech onset), we would likely detect
articulatory information and miss semantic, phonological, and grammatical aspects of
lexical representation. To protect against this, we spanned time, training models on
the mean high gamma activity in each 50ms window from -750ms to 250ms relative to
speech onset. In all, this resulted in 1280 classifiers: 10 patients × 7 ROIs × 20 training
time windows (minus ROIs where patients had insufficient electrode coverage).

Figure 2B shows the prediction accuracies from four sample classifiers. These classi-
fiers predict word identity above chance both before and after their respective training
windows (black bars), revealing that whatever information our classifiers encode comes
and stays online for longer than 50ms. In Fig. 2C we plot the maximum accuracy of all
classifiers in each region (across patients and training windows), revealing that word
identity can be decoded above chance in all seven ROIs (see Supplementary Fig. S2 for
all results by ROI). In Fig. 2D, we stacked the time series (like those in Panel B) from
all 444 classifiers with significant prediction accuracies (pink highlights). This revealed
several patterns. First, the closer a training window (black bar) was to articulation
(starting at time 0), the better the decoding, perhaps reflecting higher signal-to-noise
ratio for articulatory representations than for earlier stages. Second, training times
(black) and significant prediction times (pink) tended to overlap, suggesting that the
timecourse of representational stages is relatively consistent across picture naming tri-
als. Finally, almost regardless of training time, most classifiers were able to decode
above chance at speech onset (t = 0). This suggests that, contrary to the classical
view of a series of feed-forward stages that go offline once the next stage has been
activated, pre-articulatory representations stay online at least until speech onset, and
post-articulatory representations are engaged throughout production.

To assess whether words have the same cortical representations in picture naming
and list production, we tested the generalizability of the picture naming classifiers. We
followed the same analysis pipeline depicted in Fig. 2A. However, instead of subsets,
we use all of the picture naming trials to train classifiers. These classifiers were then
used to predict word identity at each time sample during the production of lists like
“Dracula Frankenstein.” Figure 3A shows the proportion of trials where sensorimotor
classifiers predicted the first word (“Dracula,” in our example) and the second word
(“Frankenstein”). Accuracies are time-locked the onset of the first word in the left
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Fig. 2 Word-specific information in picture naming. (A) Schematic of the analysis pipeline with
simulated data. For each patient and region of interest (ROI), we trained a classifier on word iden-
tity using the time-averaged picture naming data from the twenty 50ms-windows between -750 and
250ms (-600 to -550ms shown in the example; black rectangle). We then predicted word identity in
held out “test” trials, generating a binary prediction matrix (maroon): correct (1) or incorrect (0)
for each test trial (row) at each time sample (column). We repeated this for 30 train/test data par-
cellations (i.e., 10-fold validation, repeated 3 times), and averaged prediction accuracies across trials
to calculate accuracy over time (bottom). A permutation analysis generated 1000 results reflecting
chance performance, and significance was determined with respect to this distribution (gray). Not
depicted: train and test datasets were 3 dimensional: electrodes (not shown) × trials × time. This
whole process was performed for each patient, each ROI for which a patient had coverage, and each
of the 20 training windows spanning -750 to 250ms, resulting in a total of 1280 classifiers. (B) Pre-
diction accuracies for four sample classifiers that predicted word identity with above-chance accuracy
(pink highlights; p < .05 for 100ms or p < .01 for 50ms). From top to bottom, training and test data
came from (1) Patient 9, PTL, -350 to -300ms; (2) Patient 5, SMC, -200 to -150ms; (3) Patient 6,
SMC, -200 to -150ms; and (4) Patient 5, IFG, -150 to -100ms. (C) Each ROI’s maximum prediction
accuracy across classifiers; bars denote significance (p < .05 for 100ms or p < .01 for 50ms). (See
Supplementary Fig. S2 for results by ROI.) (D) Prediction accuracies from the 444 significant clas-
sifiers, stacked vertically to highlight the timecourse of word-specific information in picture naming.
Each horizontal line corresponds to one classifier. Pink denotes where accuracy was above chance.
Black bars represent train time window. The pink curve at the bottom shows the density of signifi-
cant predictions, revealing that the most significant decoding occurred at speech onset (t = 0).
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panel and the second word in the right. These sample results come from classifiers
trained on data from SMC between 50 and 100ms after speech onset during picture
naming, and averaged across participants. We accurately predict each word as it is
being said – e.g., Dracula when patient says Dracula and then Frankenstein when the
patient says Frankenstein. Prediction accuracies from all 97 classifiers that significantly
predicted one or both of the two nouns in the list are stacked in Fig. 3B, revealing
similar temporal dynamics of lexical information as in picture naming. Overall, there
were fewer significant classifiers (97) than for picture naming (444), likely reflecting
the lower number of trials analyzed (an average of 359 per patient for picture naming
vs. 48 for list production). The three temporal patterns we observed in picture naming
were largely preserved, though to a lesser degree. First, the closer to speech onset the
training data came from, the more significant detections the classifier made. Second,
significant prediction times tended to overlap with training times, though this was
less true for classifiers trained on pre-articulatory data. Finally, significant prediction
times tended to overlap with speech onset, particularly for the second word in lists,
where many classifiers showed above-chance accuracy during articulation even when
they failed to do so during their own training time. Overall, the similarity to the
picture naming results (Fig. 2) suggests that our list production task may involve
similar cognitive processes as picture naming.

There is reason to believe that sentences may behave differently. Whereas word
order in lists is linearly structured, word order in sentences is determined by words’
syntactic position in a hierarchical structure, which is in turn based on a com-
plex event-semantic representation. It stands to reason that sentence production may
involve fundamentally different mechanisms for accessing and producing words. To
test this, we used the same classifiers we trained for the list production analysis to
predict word identity during sentences. Like lists, each sentence contained two nouns:
the subject and the object, and we recorded the proportion of trials where classifiers
predicted each of these. We started by analyzing sentences with active syntax, e.g.,
“Dracula is hitting Frankenstein,” which, relative to non-canonical structures like the
passive, are easier to process and better preserved in aphasic patients [22, 39–42].
Figure 4A shows the results from the same sensorimotor classifiers previously shown
for lists in Fig. 3A. For active sentences, subjects and objects were decoded while each
was being said (i.e., Dracula and Frankenstein in the sample sentence, but the par-
ticular words in subject/object position varied across trials). Stacking the prediction
accuracy time series from all 83 significant classifiers (Fig. 4C) revealed that this was
a general pattern: subjects and objects were predicted at their respective production
times.

However, in active sentences, the order of the two nouns is confounded with their
relative salience in the event. That is, the character performing the action is the
subject and comes first, and the character being acted upon is the object and comes
second [22]. It is therefore not entirely surprising that the brain processes words in
active sentences the way it does in lists: in the order that they are produced. We
wondered whether this pattern was generally true of sentence production, or only true
when word order aligns with salience. A potentially interesting test case is the English
passive (e.g., “Frankenstein is being hit by Dracula”), which involves reversing the
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Fig. 3 Predicting words in lists using picture naming data. (A) Sample prediction accuracies for the
first and second nouns in lists (e.g., “Dracula” and “Frankenstein” in the example) from classifiers
trained on picture naming and tested on lists. The significant detections of the two nouns in the
list are evidence of words’ common cortical representations across tasks. Training data came from
electrodes in SMC (highlighted on brain) between 50 and 100ms post-speech onset (denoted by black
bar) and the resulting prediction accuracies were averaged across patients. Significant prediction
accuracy is highlighted in pink (p < .05 for 100ms or p < .01 for 50ms). (B) Prediction accuracy time
series (like those in Panel A) from the 97 significant classifiers for lists, stacked vertically to highlight
temporal patterns in word-specific information during list production. In this and subsequent stacks
of prediction accuracies, each time series (horizontal line) corresponds to the same classifier across the
left and right panels. Blue highlights show where a classifier predicted the first noun above chance;
green for the second noun (p < .05 for 100ms or p < .01 for 50ms). Black bars denote the time
window the training (picture naming) data came from. Blue and green density plots at the bottom
summarize the significant predictions. As with picture naming decoding (Fig. 2D), the most significant
detections of each word happened at that word’s articulation onset.

order of nouns – i.e., producing the character being acted upon first, and the character
doing the action second. Passive sentences thus present an opportunity to disentangle
serial order and salience, as they convey the same meaning but reverse the order of
words. We expected that in sensorimotor cortex, where articulatory information is
encoded, words would be decoded in the same order as in speech. Figure 4C shows
the predictions of the same SMC classifier from Panel A (and Fig. 3A) for passive
sentences, and the results did in fact show this temporal congruence. To look at the
overall pattern, we stacked the predictions from all 97 classifiers that made above-
chance predictions (Fig. 4D; for a breakdown by ROI see Supplementary Fig. S3).
This analysis revealed an entirely different pattern of results. In passives, both the
subject and object remained active throughout the entirety of the sentence, revealing
that the brain processes both characters in the sentence simultaneously rather than
sequentially. To assess whether this constituted a statistically significant difference
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Fig. 4 Predicting words in sentences with picture naming data. (A) Sample prediction accuracies
for the first and second nouns (i.e., subject and object) of active sentences, locked to the onset of
each word. This was the same classifier as in Fig. 3A, i.e., trained on picture naming data from
electrodes in SMC between 50 and 100ms (black bar) after speech onset (averaged across patients).
Both nouns were predicted above chance at the time of their respective articulations (pink highlight;
p < .05 for 100ms or p < .01 for 50ms). (B) Stacked prediction accuracies from the 83 significant
classifiers for active sentences, locked to the onset of both nouns. Density plots at bottom show that
each word’s accuracy peaked during its articulation. (See Supplementary Fig. S3 for density plots
broken down by ROI.) (C) Mean prediction accuracies for passive sentences from the same SMC
classifier in Panel A and Fig. 3A. Again, prediction accuracy was above chance for both nouns during
their respective articulations. (D) Stacked prediction accuracies from the 97 significant classifiers for
passive sentences, locked to the onset of each noun. Unlike in active sentences and lists, there is little
correspondence between training time (black bars) and the times when words were detected (green
and blue segments). This point is made especially clear by the density plots, which reveal both subject
and object were active throughout the production of passive sentences. (E) Number of classifiers that
significantly predicted either word in the sentence, broken down by whether the prediction revealed
temporally congruent processing (i.e., detection of the subject noun during production of the subject
or detection of the object during the object) or incongruent (detection of the object during the
subject or vice versa). While both active (black) and passive (gray) sentences involved temporally
congruent word processing, passives had significantly more incongruent detections than actives (FDR-
corrected p < .001 for both incongruent subjects and objects; one-sided tests of equal proportions).
Pie charts show where these incongruent detections were made. Incongruent detections were driven
by sustained representation of the subject in IFG (FDR-corrected p < .001) and the object in MFG
(FDR-corrected p = .003; both one-sided tests of equal proportions; see Supplementary Fig. S3).
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from active sentences, we counted the number of classifiers that detected each word
during the production of each word (Fig. 4E) – i.e., the number of classifiers that
detected the subject when the subject was being said or the object when the object
was being said – “congruent” detections – and the number of classifiers that detected
the object when the subject was being said or the subject when the object was being
said – “incongruent” detections. In both active and passive sentences we observed
many congruent detections (Fig. 4E, left). However, of the incongruent detections we
observed (Fig. 4E, right), nearly all were in passive trials. Relative to active sentences,
passive sentences involved significantly more incongruent detections of both subjects
and objects (for both: FDR-corrected p < .001, one-sided test of equal proportions).
This pattern was driven by two regions (see pie charts and Supplementary Fig. S3):
IFG, which preferentially encoded subjects throughout passive sentences, and MFG,
which preferentially encoded objects. Strikingly, even when patients were producing
the subject of a passive sentence, their brains more strongly encoded the object, as
evidenced by the higher number of incongruent detections (predictions of the object)
than congruent ones (predictions of the subject), although this difference was not
statistically significant after corrections for multiple comparisons.

3 Discussion

Single word production tasks like picture naming have dominated the neuroscience of
language production. Here, we leveraged the unparalleled spatiotemporal precision of
ECoG and employed an innovative cross-task classification approach to demonstrate
similarities and differences in word processing between single word production and
sentence production. We first demonstrated that individual words can be decoded
from patterns of activity in picture naming data, verifying that our data contained
word-specific information and revealing an unexpected pattern that contradicts the
classical depiction of a feedforward sequence of stages in word production. Next, we
used the picture naming data to train a series of classifiers on word identity at 20 time
points over the course of picture naming and in seven regions of interest. We showed
that these classifiers successfully decoded each word during the production of word
lists in the order in which words were said. We then applied these same classifiers to
sentences to determine whether sentence production could similarly be modeled as a
sequence of single word productions. We started with active sentences, which represent
the canonical word order in English and involve producing nouns in order from most
to least salient. As we observed for lists, classifiers successfully decoded the two words
in active sentences in the order in which they were produced. Finally, we used the
classifiers to decode word identity during the production of passive sentences, which
encode the same events as active sentences but with the reverse word order. Here, we
observed a significant departure from the temporal alignment of word processing in
the brain and word order in speech: rather than encoding each word as it was being
said, the brain encoded both words simultaneously for the duration of the sentence,
revealing that sentence production is not simply a sequence of serially executed single-
word productions, but involves a dynamic interplay between syntactic structure and
word planning.
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Our findings validate various aspects of existing cognitive [43–45] and computa-
tional [46] models of sentence production. Specifically, these models assume that word
representations are invariant across different behaviors. Our finding that the cortical
representations of words during picture naming successfully generalize to lists and sen-
tences validate this assumption. Furthermore, these models build in a dependence on
syntactic structure during sentence planning, suggesting that the particular dynamics
of word representations may vary with syntactic structure. Indeed, our data provided
evidence of this in the striking difference in the temporal dynamics of word planning
between active and passive sentences.

One area where our findings diverged from cognitive models was in the timecourse
of particular word representations during picture naming. According to the classical
view of word production [10–13], representational stages (e.g., conceptual, phonolog-
ical, articulatory) come online in a feedforward sequence, with each stage activating
the next before going offline. In our data, however, we observed that once a classifier
detected word-specific information, it typically continued to do so until at least the
onset of speech. This suggests a slightly different picture, involving a cascade of word
representations that, once online, remain online until word articulation is successfully
underway.

Finally, we suggest that our findings may shed light on a widely noted but poorly
understood pattern among the worlds’ 6,000 languages. Specifically, there are six pos-
sible ways a language can arrange subjects, verbs, and objects: Subject-Verb-Object
(as in the English “I eat cake”), Subject-Object-Verb (as in Farsi “man keik mikho-
ram,” literally “I cake eat”), and so on. However, of these 6 logically possible word
orders, fewer than 5% of languages place objects before subjects (e.g., Object-Subject-
Verb) [47, 48]. One possible reason for this is that there is a natural tendency in speech
to order words from most to least salient, and subjects tend to be more semantically
salient than objects. In our experiment, passive sentences provided an opportunity to
visualize how the brain processes words when producing less salient words before more
salient ones. In these cases, word planning involved a much more complex temporal
pattern. Indeed, whereas word planning in actives resembled picture naming and lists,
in passives the brain encoded both the subject and the object for the duration of the
sentence. This was driven by sustained activation of both nouns in prefrontal cortex.
Specifically by IFG sustained a representation of the subject, and MFG sustained a
representation of the object. Furthermore, reaction times, commonly interpreted as
an index of processing difficulty, were significantly longer for passives than actives
(1,424ms and 1,164ms, respectively; p < .001, Wilcoxon rank sum test) and lists
(801ms; p < .001, Wilcoxon rank sum test). Taken together, these facts point toward
a processing-based explanation of the cross-linguistic dominance of subject-before-
object word orders like those in English and Farsi. Producing words in order from
least to most salient may simply be harder for the production system. We speculate
that, over the course of language evolution, this difficulty exerts a subtle pressure on
language change, making it more likely for languages to evolve in the direction of
subject-before-object orders.
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4 Methods

The data in this study were also reported in Morgan et al. 2024. Details of participants,
experimental design, and data collection are repeated below.

4.1 Participants

We recorded data from ten neurosurgical patients undergoing evaluation for refrac-
tory epilepsy (3 female, mean age: 30 years, range: 20 to 45). All ten were implanted
with electrocorticographic grids and strips. Patients provided informed consent both
in writing and then again orally prior to the beginning of the experiment. The implan-
tation and location of electrodes were guided solely by clinical requirements. Eight
participants were implanted with standard clinical electrode grid with 10mm spaced
electrodes (Ad-Tech Medical Instrument, Racine, WI). The remaining two participants
consented to a research hybrid grid implant (PMT corporation, Chanassen, MN) that
included 64 additional electrodes between the standard clinical contacts (with overall
10mm spacing and interspersed 5mm spaced electrodes over select regions), provid-
ing denser sampling but with positioning based solely on clinical needs. The research
study protocol was approved by the NYU Langone Medical Center Committee on
Human Research.

4.2 Data collection and preprocessing

Participants were tested while resting in their hospital bed in the NYU Langone
epilepsy monitoring unit. Stimuli were presented on a laptop computer screen posi-
tioned at a comfortable distance from the participant. Participants’ voice was recorded
with a cardioid microphone (Shure MX424). The experiment computer generated
inaudible TTL pulses marking the onset of a stimulus. These were recorded in auxil-
iary channels of both the clinical Neuroworks Quantum Amplifier (Natus Biomedical,
Appleton, WI), which records ECoG, and the audio recorder (Zoom H1 Handy
Recorder). The microphone signal was also fed to the audio recorder and the ECoG
amplifier. These redundant recordings were used to sync the speech, experiment, and
neural recordings.

The standard implanted ECoG arrays consisted of 64 macro-contacts (2mm
exposed, 10mm spacing) in an 8×8 grid. Hybrid grids contained 128 electrode chan-
nels, including the standard 64 macro-contacts plus 64 additional interspersed smaller
electrodes (1 mm exposed) between the macro-contacts (providing 10mm center-to-
center spacing between macro-contacts and 5mm center-to-center spacing between
micro/macro contacts, PMT corporation, Chanassen, MN). The FDA-approved hybrid
grids were manufactured for research purposes, which we explained to patients during
consent. In all ten patients, ECoG arrays were implanted on the left hemisphere. The
location of the grid was solely dictated by clinical needs.

ECoG was recorded at 2,048Hz, which was decimated to 256Hz prior to processing
and analysis. We excluded electrodes with artifacts (i.e., line noise, poor contact with
the cortex, and high amplitude shifts) or with interictal/epileptiform activity prior to
subtracting a common average reference (across all valid electrodes and time) from
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each individual electrode. We then extracted the envelope of the high gamma compo-
nent (the average of three evenly log-spaced frequency bands from 70 to 150Hz) from
the raw signal with the Hilbert transform.

The signal was epoched locked to stimulus (i.e., cartoon images) and production
onsets for each trial. The 200ms silent period preceding stimulus onset (during which
patients were not speaking and fixating on a cross located at the center of the screen)
was used as a baseline, and each epoch for each electrode was z-scored (i.e., normalized)
to this baseline’s mean and standard deviation.

4.3 Experimental Design

4.3.1 Procedure

The experiment was performed in a single session that lasted approximately 40 min-
utes. Stimuli were presented in pseudo-random order using PsychoPy [49]. All stimuli
were constructed using the same 6 cartoon characters (chicken, dog, Dracula, Franken-
stein, ninja, nurse), chosen to vary along many dimensions (e.g., frequency, phonology,
number of syllables, animacy, proper vs. common, etc.) to facilitate identification of
word-specific information at analysis.

The experiment began with two short familiarization blocks. In the first block (6
trials), participants saw each of the six cartoon characters once with labels (chicken,
dog, Dracula, Frankenstein, ninja, nurse) written beneath the image. Participants
read the labels aloud, after which the experimenter pressed a button to go to the next
trial. In the second block, participants saw the same six characters one at a time,
twice each with order pseudo-randomized (12 trials), but without labels. Participants
were instructed to name the characters out loud. After naming the character, the
experimenter pressed a button revealing the target name to ensure patients had learned
the correct labels. Participants then completed the first picture naming block (96
trials). Characters were again presented in the center of the screen, one at a time, but
no labels were provided.

Next, participants performed a sentence production block (60 trials), which began
with two practice trials. Participants were instructed that there were no right or
wrong answers, that the goal of the experiment was to understand what the brain is
doing when people speak naturally. On each trial, participants saw a 1 s fixation cross
followed by a written question, which they were instructed to read aloud, ensuring
attention. After another 1 s fixation cross, a static cartoon vignette appeared in the
center of the screen depicting two of the six characters engaged in a transitive event
(one character acting on the other). Participants were instructed to respond to the
question with a description of the vignette. The image remained on the screen until
the participant completed their response, at which point the experimenter pressed a
button to proceed. After the first 12 trials, the target sentence (i.e., an active sentence
after an active question or passive sentence after a passive question) appeared in text
on the screen and participants read it aloud. We described these target sentences as
“the sentence we expected you to say.” The goal of this was to implicitly reinforce the
link between the syntax of the question and the target response. If the participant
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appeared to interpret these as corrections, the experimenter reminded them that there
were no right or wrong answers.

Between each sentence production trial, we interleaved two picture naming trials
in order to reduce task difficulty and facilitate fluent sentence production. The picture
naming trials showed the two characters that would be engaged in the subsequent
vignette, presented in a counterbalanced order such that on half of trials they would
appear in the same order as in the target sentence response, and in the opposite order
on the other half.

After the sentence block, participants performed the listing block. List production
was designed to parallel sentence production. Each trial began with a 1 s fixation cross,
followed by an arrow pointing either left or right appeared for 1 s in the center of the
screen. After another 1 s fixation cross, a cartoon vignette, taken from the exact same
stimuli as in the sentence block, appeared on the screen. Participants named the two
characters in the vignette either from left to right or from right to left, according to the
direction of the preceding arrow. As in sentence production trials, each list production
trial was preceded by two picture naming trials involving the two characters that
would appear in the subsequent vignette in counterbalanced order.

Between each block, participants were offered the opportunity to end the exper-
iment if they did not wish to continue. One participant stopped before the list
production block, providing only data for picture naming and sentence production.
The remaining nine participants completed all three blocks. These nine were also
offered the opportunity to complete another picture naming block and another sen-
tence production block. Six consented to an additional picture naming block and two
additionally consented to another sentence production block.

4.3.2 Stimulus Design, Randomization, and Counterbalancing

Picture naming stimuli consisted of images of the 6 characters presented in pseudoran-
dom order so that each consecutive set of 6 trials contained all 6 characters in random
order. This ensured a relatively even distribution of characters over time, and that no
character appeared more than two times in a row. Characters were pseudorandomly
depicted in 8 orientations: facing forward, backward, left, right, and at the 45◦ angle
between each of these.

Sentence production stimuli consisted of a written question followed by a static
cartoon vignette. Questions were manipulated so half were constructed with passive
syntax and the other half with active. All questions had the format: “Who is [verb]-ing
whom?” or “Who is being [verb]-ed by whom?”. There were 10 verbs: burn, hit, hyp-
notize, measure, poke, scare, scrub, spray, tickle, trip. Each verb was used to create
3 vignettes involving 3 characters in a counterbalanced fashion so that each charac-
ter was the agent (i.e., active subject) in one vignette and the non-agent (i.e., active
object) in one vignette. Each of these three vignettes was shown twice in the sen-
tence production block, once preceded by an active question and once by a passive
question, priming active and passive responses [28]. Vignettes were flipped around the
vertical axis the second time they appeared so the character that was on the left in
the first appearance was on the right in the second appearance. This was also coun-
terbalanced so that on half of the trials in each syntax condition (active/passive) the
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subject was on the left. List production stimuli consisted of the same 60 vignettes, also
pseudorandomly ordered and counterbalanced across conditions (i.e., arrow direction).

4.4 Data Coding and Inclusion

Speech was manually transcribed and word onset times were manually recorded using
Audacity [50] to visualize the waveform and spectrogram of the audio recording. Pic-
ture naming trials were excluded if the first word uttered was not the target word
(e.g., “Dracula – I mean Frankenstein”). Sentence trials were excluded if the first word
was incorrect (i.e., “Dracula” instead of “Frankenstein,” regardless of active/passive
structure) or if the meaning of the sentence did not match the meaning of the depicted
scene; no sentences were excluded because the syntax did not match that of the prime
question. Sentences were coded as active or passive depending on the structure the
patient used, not the prime structure. Listing trials were excluded if the first word
was incorrect (“Dracula” instead of “Frankenstein”) or if the order did not match that
indicated by the arrow.

In analyses for the three trial types (picture naming, sentence production, and list
production), data from all patients who completed trials in that block are included.
Data from one patient who did not complete the list production block is not included
in the list production analyses, and data from 3 patients who produced 3 or fewer
passive sentences during sentence production blocks were not included in the analyses
of passive sentences.

4.5 Electrode Localization

Electrode localization in both subject space and MNI space was based on coregister-
ing a preoperative (no electrodes) and postoperative (with electrodes) structural MRI
(in some cases, a postoperative CT was employed depending on clinical requirements)
using a rigid-body transformation. Electrodes were then projected to the cortical sur-
face (preoperative segmented surface) to correct for edema-induced shifts following
previous procedures [51] (registration to MNI space was based on a nonlinear DAR-
TEL algorithm). Based on the subject’s preoperative MRI, the automated FreeSurfer
segmentation (Destrieux) was used for labeling electrodes’ within-subject anatomical
locations.

4.6 Significance testing and corrections for multiple
comparisons in time series data

Statistical tests on time series data were performed independently at each time sample,
producing the same number of p-values as there are samples in the time series. To
correct for multiple comparisons we follow [36, 52, 53] and establish a conservative
criterion for significance for all time series comparisons: an uncorrected p-value that
remains below .05 for at least 100 consecutive milliseconds or below .01 for at least 50
consecutive milliseconds.
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4.7 Multi-class classification

For the analyses in Figs. 2–4 we trained multi-class classifiers on word identity using
the caret and nnet packages [54, 55] in R [56]. Classifiers consisted of a series of one-vs-
rest logistic regressions (fit as a neural network), which were chosen for their simplicity
and interpretability. For the picture naming analyses (Fig. 2), we used a repeated
cross-fold validation procedure (3 repeats, 10 folds) to calculate prediction accuracy,
and arbitrarily chose a mid-range value of 10−3 for decay, the lone hyperparameter
in this model (typical values are logarithmically spaced along the range from 10−6

to 100). For the subsequent analyses of list and sentence production data, we first
performed repeated cross-validation on the picture naming data again to find the
optimal hyperparameters for each individual classifier, and then retrained each model
with that hyperparameter and using all of the picture naming trials (rather than a
training subset). We then used this model to predict word identity at every time point
throughout each trial in the list and sentence production blocks. Prediction accuracy
time series like those in Fig. 4A reflect the mean of the binary accuracy scores across
sentence production trials separately for the subject and the object (which on different
trials were different combinations of the six nouns, e.g., Dracula, dog, etc.), smoothed
with a 100ms boxcar function. To generate the noise distribution (gray shaded area),
we performed a permutation analysis, shuffling labels on the test data and repeating
the prediction analysis 1000 times. We determined significance by calculating the upper
95th and 99th percentiles of the mean trial accuracies generated by the permutation
analysis for each time sample (see Section 4.6 for details on multiple comparisons
corrections).

4.8 Temporal warping

The time between stimulus and speech onsets the planning period, varied both across
and within patients. Consequently, cognitive processes become less temporally aligned
across trials the farther one moves away from stimulus onset in stimulus-locked epochs
or from speech onset in speech-locked epochs. Temporal warping reduces such mis-
alignments [31–35], which we previously verified in this dataset [36]. Following [34, 36],
we linearly interpolated the data in the middle of the planning period (from 150ms
post-stimulus to 150ms pre-speech) for each trial, setting all trials’ planning periods
to the same duration (Supplementary Fig. S1): the global median per task (1141ms
for sentences; 801ms for lists; 758ms for words). Specifically, for each task we first
excluded trials with outlier response times, which we defined as those in the bottom
2.5% or top 5% per participant. We then calculated median response times per task
across participants (1,142ms for sentences, 801ms for lists, and 758ms for words),
and for each electrode and each trial, concatenated (a) the stimulus-locked data from
150ms post-stimulus to 1

2 the median response time with (b) the production-locked
data from − 1

2 median response time to 150ms pre-speech. We then linearly interpo-
lated this time series to the number of time samples that would, when concatenated
between the 150ms post stimulus (stimulus-locked) and 150ms pre-speech (speech-
locked), result in a time series with the median planning period duration. Finally,
we concatenated (a) the unwarped data leading up to 150ms post-stimulus, (b) the
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warped data from the previous step, and (c) the unwarped data starting 150ms before
speech onset, forming the final epochs used in the analyses. We direct the reader to
Morgan et al. 2024 for a fuller discussion and demonstration that this temporal warp-
ing increased signal to noise ratio in this dataset, as well as analyses of the unwarped
high gamma activity across regions of interest.
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Appendix A Supplementary Information

A.1 Data Warping

Supplementary Fig. S1, reproduced from Morgan et al. 2024, demonstrates the
temporal warping procedure for a sample electrode (see Methods Sec. 4.8).

Fig. S1 Warped and unwarped sentence production data from a sample electrode. The data in
each trial between 150ms post stimulus and 150ms pre-speech were linearly interpolated to set the
duration of the planning period to the global median per task (1142ms for sentence production)
[34]. (A) Sample electrode localization in MFG. (B) The mean of this electrode’s warped (pink) and
unwarped (gray) trials. Prior to warping, this patient’s median sentence response time was 995ms;
after warping it was 1,141ms: the median sentence production response time across patients. The
peak of the warped data was higher than the unwarped peak, a sign that warping resulted in better
temporal alignment and consequently higher signal-to-noise ratio. (C) Three sample trials: warped
(pink) and unwarped (gray) data.
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A.2 Picture naming classification results by ROI

Fig. S2 Picture naming classification results by ROI. (A) Results from five sample classifiers (see
Fig. 2 for methods). From top to bottom, the classifiers were trained and tested on picture naming
data in (1) Patient 9, PTL, -350 to -300ms; (2) Patient 6, SMC, -200 to -150ms; (3) Patient 9, IFG,
-150 to -100ms; (4) Patient 10, ATL, -400 to -350ms; and (5) Patient 4, IPL, -350 to -300ms. (B)
Stacked picture naming prediction accuracies from each significant classifier by ROI (across patients
and training windows). Number of significant classifiers appears in parentheses. Word identity was
decodable in all seven ROIs, with the highest decodability in SMC and lowest in PTL, which was
also the only ROI to peak during the pre-articulatory period.
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A.3 Sentence classification results by ROI

Fig. S3 Sentence production classification results by ROI: Density of significant prediction accura-
cies of subject and object in active (left) and passive (right) sentences. The y-axis is scaled to the
number of significant classifiers in each region and for both syntactic structures. (NB: due to high
decodability in SMC it was scaled to 30; all other ROIs go from 0 to 10.) Notably, incongruent detec-
tions (i.e., predicting the subject during production of the object or predicting the object during
production of the subject), which nearly exclusively occurred in passive sentences (Fig. 4E), appear
to have been driven by processing in IFG, which preferentially encoded passive subjects, and MFG,
which preferentially encoded passive objects.
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