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Abstract

Syntax, the abstract structure of language, is a hallmark of human cognition.
Despite its importance, its neural underpinnings remain obscured by inherent lim-
itations of non-invasive brain measures and a near total focus on comprehension
paradigms. Here, we address these limitations with high-resolution neurosurgical
recordings (electrocorticography) and a controlled sentence production experi-
ment. We uncover three syntactic networks that are broadly distributed across
traditional language regions, but with focal concentrations in middle and inferior
frontal gyri. In contrast to previous findings from comprehension studies, these
networks process syntax mostly to the exclusion of words and meaning, support-
ing a cognitive architecture with a distinct syntactic system. Most strikingly, our
data reveal an unexpected property of syntax: it is encoded independent of neu-
ral activity levels. We propose that this “low-activity coding” scheme represents
a novel mechanism for encoding information, reserved for higher-order cognition
more broadly.
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1 Introduction

Syntax, the abstract structure underlying uniquely human behaviors like language,
music [1–5], and possibly math [6, 7], is the evolutionary adaptation that sets our
species’ cognition apart. In language, syntactic representations take the form of
abstract structural “rules” like Sentence = Subject + Verb + Object, which we use to
communicate infinite meanings with finite words. Despite its centrality in human cog-
nition, it continues to elude a satisfactory neural characterization, in large part due
to a number of contradictory findings in the literature.

One area of disagreement is localization: where and how syntax is spatially encoded.
Traditionally, syntax was approached from a localizationist perspective, and indeed
certain anatomical regions are frequently associated with syntax, especially inferior
frontal gyrus (IFG) [8–18] and posterior temporal lobe [8–15, 19–22]. However, a grow-
ing number of studies have identified syntactic processing throughout broad swaths of
cortex outside these traditional hubs [17, 22–25], suggesting the localizationist view
may be insufficient and pointing instead to a highly distributed code. Relatedly, there
is significant disagreement regarding selectivity : the degree to which syntax overlaps
with words and meaning, which has important theoretical implications (see [25, 26]
for discussion). Findings of syntax-selective regions are abundant in the literature
[11–13, 22, 27–34], although the precise locations and functions identified vary widely
across studies. However, recent work using more advanced and targeted methods has
reported extensive spatial overlap in these systems [22–25, 35–37].

These discrepancies likely reflect a number of factors. For one, different studies
define syntax differently, and may in fact be studying different phenomena. While
syntax is often treated as a monolith in neuroscience, it is in fact a complex system
involving multiple types of representations (e.g., function words, hierarchical “tree”
structures, word categories) and processes (e.g., agreement, sequencing, and binding).
Some experimental designs target the depth of syntactic processing by manipulating
the complexity of hierarchical structures [9, 17, 23]. Others have manipulated the
presence or absence of syntactic structure by comparing sentences to unstructured
lists of words [9, 35, 37–44], targeting the system as a whole. A second potential
source of the discrepancies are confounds, a nearly inevitable problem when studying
an inherently abstract system [45]. Complexity manipulations also systematically vary
working memory demand, and sentence-list comparisons vary combinatorial semantics.
While creative solutions have been employed to mitigate these concerns, manipulations
to syntax inevitably involve variation in some additional dimension in any study.

Here, take a focused approach, aiming to understand the neural underpinnings
of hierarchical structural representations rather than, e.g., syntactic processing as
a whole. We leverage an approach from lower-level sensory neuroscience, where
considerable advances have been made in mapping sensory cortices by contrasting rep-
resentations like phonemes [46] and visual gradients [47, 48]. We compare two syntactic
representations: the active and the passive. These hierarchical tree structures can be
used to express the same meaning by arranging the same content words (e.g., Dracula,
spray, chicken) in reverse orders (active: “Dracula sprayed the chicken”; passive: “The
chicken was sprayed by Dracula”), thereby varying syntax while holding words and
meaning constant. We account for potential differences in difficulty and articulation
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with signal processing and modeling techniques, mitigating concerns about confounds
with frequency or difficulty.

We also fill a number of other critical gaps in the literature. First, with few
exceptions [21, 49–51], the vast majority of prior research has studied comprehension.
However, comprehension as a modality introduces a number of complications for study-
ing syntax. As comprehension is an ongoing process of building and assessing candidate
syntactic structures, it is highly dynamic [11, 52, 53]. Any sort of reasonable tempo-
ral granularity is very hard to achieve in comprehension, particularly when looking at
individual representations whose activation may be relatively fleeting. Perhaps most
problematically, though, is that syntax is often altogether ignored during comprehen-
sion in favor of less effortful strategies (e.g., context) [54–57]. Consequently, the lack
of selectivity reported by some studies may reflect a computational shortcut based on
context rather than an inherent property of syntax. Second, experimental paradigms
comparing sentences and lists have become a dominant approach to studying syntax
[9, 35, 37–44]. However, processing even single words engages syntax [58, 59], calling
into question the effectiveness of these comparisons in isolating syntax. Finally, previ-
ous research has relied primarily on non-invasive neuroimaging and electrophysiology,
which provide either high spatial or high temporal resolution, but not both [60, 61].

Here we address these gaps by employing a controlled sentence production exper-
iment while sampling neural data directly from cortex in ten neurosurgical patients.
Electrocoticography (ECoG), which is virtually immune to motor artifacts, provides
simultaneously high spatial and temporal resolution. In contrast to comprehension,
the syntactic structure of an utterance is selected prior to speech onset in production
[11, 53, 62, 63] and remains invariant over time. In our stimuli, this is logically ensured
by the fact that the subject (i.e., first word) depends on the choice of structure, mak-
ing it impossible to begin speaking without a priori structure assignment. Together,
these methods afford unparalleled resolution, and enable us to introduce a fine-grained
manipulation that varies syntactic frames while holding semantics and lexical elements
largely constant. We directly contrast this manipulation with the traditional approach
of comparing sentences and lists and show that the sentence-list comparison misses
not just some, but the majority of electrodes that are truly sensitive to syntax. We
demonstrate that this derives from a striking and previously uncharacterized prop-
erty of higher-level cognitive representations, which we term “low-activity coding,”
whereby processing is independent of the overall degree of neural activity. The com-
bination of ECoG, a production paradigm, and a controlled syntactic manipulation
allow us to capture a number of important and previously unknown properties of this
hallmark aspect of human cognition.

2 Results

Ten neurosurgical patients with electrode coverage of left peri-Sylvian cortex (Fig. 1A)
performed a sentence production task and two control tasks: list production and pic-
ture naming (Fig. 1B). During sentence production, patients overtly described cartoon
vignettes depicting transitive actions (e.g., poke, scare, etc.) in response to a preceding
question. Questions were manipulated to use either active (“Who poked whom?”) or
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passive syntax (“Who was poked by whom?”), implicitly priming patients to respond
with the same structure (“The chicken poked Dracula” or “Dracula was poked by the
chicken”) [64]. This manipulation varied syntactic structure, while holding semantic
and lexical content largely constant. During the list production control task, partic-
ipants saw the same vignettes as in the sentence production trials, but preceded by
an arrow indicating the direction in which participants should list the characters: left-
to-right (e.g., “chicken Dracula”) or right-to-left (“Dracula chicken”), mimicking the
reverse order of nouns in active and passive sentences. We quantified neural activity
as high gamma broadband activity (70−150Hz), normalized (z-scored) to each trial’s
200ms pre-stimulus baseline, as this correlates with underlying spiking and BOLD sig-
nal [65, 66] and has been widely employed in the ECoG literature. Parallel analyses on
beta-band activity, also associated with cognition [67, 68], appear in the supplemental
information (see Supplemental Information A.2).

We began by comparing neural activity between sentence production and the list
production control. We looked for differences during the planning period – the time
between the onset of the cartoon vignette and speech onset, when syntactic and
semantic representations are selected [62, 63]. This identified 60 broadly distributed
electrodes with significantly higher activity for sentences (p < .05 for 100ms, Wilcoxon
rank sum test), with sentences recruiting higher activity in the 200 to 400ms post-
stimulus window in posterior temporal areas and the inferior parietal lobule (IPL),
and increasing in IFG and middle frontal gyrus (MFG) leading up to production (Fig.
1C). A region-of-interest (ROI) analysis (Fig. 1D) found four regions with significantly
higher activity for sentences during the planning period: IFG, MFG, IPL, and middle
temporal gyrus (MTG) (p < .05 for 100ms, permutation test; see Methods Sec. 4.7).

While comparisons of sentences and lists are common, they differ in multiple pro-
cesses [37–39, 41–43]. In order to specifically test for syntax, we looked for sensitivity
to syntactic structure by comparing active and passive sentences. Because active and
passive trials had significantly different response times (see Sec. 4.8), we followed [69–
71] and temporally warped the data to remove these differences, setting each trial’s
response time to the median for that task (see Supplementary Fig. S1). Critically, this
did not change the pattern of results in Fig. 1 (see Supplementary Fig. S2 for a repli-
cation using the warped data), and demonstrably increased the signal-to-noise ratio in
the sentence and list production data (Supplementary Fig. S3). Figure 2A shows the
sentence-list and active-passive comparisons for three sample electrodes. Electrodes E1
and E2 showed patterns assumed in the literature: E1 had significantly higher activ-
ity for sentences than lists (top plot; p < .05 for 100ms, Wilcoxon rank sum test) and
corresponding differences between active and passive syntax in the same time win-
dows (bottom; p < .05 for 100ms, Wilcoxon rank sum test). Electrode E2 also had
significantly higher sentence activity (p < .05 for 100ms, Wilcoxon rank sum task),
but showed no syntax sensitivity, suggesting involvement in some other process that
differs between sentences and lists such as combinatorial semantics.

However, the most prevalent pattern we observed among significant electrodes,
exemplified by Electrodes E3 and E4, was unexpected. Despite no significant increase
in sentence activity relative to lists, these electrodes showed significant differences
between active and passive trials. This combination of sensitivity to syntax without
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Fig. 1 (A) Coverage across all 10 patients (1256 electrodes after exclusions, see Methods Sec.
4.2). (B) Experimental design: Participants completed three overt production tasks. During Sentence
Production trials, they produced sentences to respond to preceding questions. Questions appeared
with either active (“Who sprayed whom?”) or passive syntax (“Who was sprayed by whom?”),
implicitly priming patients to respond with active (“The chicken sprayed Dracula”) or passive syntax
(“Dracula was sprayed by the chicken”). During List Production, a control task, participants saw the
same stimuli from the Sentence Production block, but preceded by an arrow indicating the direction
in which to order the two characters. During Picture Naming trials, they produced single words. (C)
Magnitude of difference in neural activity (Cohen’s d) for all electrodes with a significant difference
between sentences and lists, in 200 ms bins (p < .05, FDR-corrected across electrodes, Wilcoxon
rank sum test). (D) Mean and standard error of high gamma activity for all three tasks, by region,
locked to stimulus (i.e., picture) onset (left column) and production onset (right column). Pink bar
at bottom indicates times when sentences had significantly greater activity than lists (p < .05 for at
least 100ms; one-tailed Wilcoxon rank sum test). Region abbreviations: inferior frontal gyrus (IFG),
middle frontal gyrus (MFG), sensorimotor cortex (SMC), superior temporal gyrus (STG), middle
temporal gyrus (MTG), inferior parietal lobule (IPL).

elevated sentence activity violates one of the most fundamental assumptions in the
field: that information processing corresponds to increased neural activity. Indeed,
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Fig. 2 (A) Four sample electrodes. Top: mean and standard error of high gamma activity by task.
Pink bars denote where sentences were significantly higher than lists (p < .05 for 100ms, Wilcoxon
rank sum test). Bottom: mean and standard error of sentence trials split by syntax condition; bars
denote significant differences between active vs. passive trials (p < .05 for 100ms, Wilcoxon rank sum
test). (B) 60 electrodes had significantly higher activity for sentences than lists (p < .05 for 100ms,
Wilcoxon rank sum test) and 125 electrodes had significant differences between active and passive
trials (p < .05 for 100ms, Wilcoxon rank sum test). Only 6 electrodes (< 5%) had both. (C) RSA
analysis pipeline: For each electrode at each time sample, we modeled the magnitude of differences
in high gamma activity for each pair of sentence trials as a function of differences in syntax, event
semantics, and (sub)lexical content. (D) Representational Similarity Indices (RSIs; derived from
model coefficients) for the same four sample electrodes show evidence for syntax in E1, E3, and E4
and event semantics in E2 (all p < .05 for 100 ms; one-tailed permutation tests). (E) Significant
electrodes (p < .05 for 100ms, permutation test) by RSA term. Most significant electrodes were
selective for just one representation. (G-H) Two approaches to assessing the relationship between
high gamma activity and RSIs for significant electrodes. In both, syntax and semantics were not
significantly related to high gamma, but (sub)lexical processing was. (F) Regressing activity over
RSIs at the electrode- and RSI- specific time sample when RSIs peaked (syntax: p = .987, semantics:
p = .248, (sub)lexical: p < .001, linear regression). (G) Correlating across electrodes at each time
sample (significant (sub)lexical RSI: p < .05 for 100ms, Spearman correlation).
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while 125 electrodes were in fact sensitive to syntax, only 6 of these (fewer than 5%)
were identified by comparing sentences to lists (Fig. 2B). Thus, syntactic process-
ing is not well captured by increased neural activity. In order to quantify and isolate
syntax from other sources of variance, we leveraged an analytical technique that com-
bines Representational Similarity Analysis (RSA) and multiple regression (Fig. 2C;
Methods Sec. 4.9) [72–75]. We modeled neural dissimilarity as a linear combination
of syntactic (active vs. passive), event-semantic (GPT-2 sentence embeddings [76]),
(sub)lexical (same vs. different sentence-initial word) dissimilarity. The (sub)lexical
term accounts for variance associated with surface differences between active and pas-
sive sentences such as the presence of the word “by” – although these differences did
not appear until the third or fourth word of the sentences (relatively late compared
to the period prior to sentence onset, where we concentrated our analyses). We also
included response time as a covariate in the model to further account for potential
differences in the frequency and/or difficulty of actives and passives. We derived Rep-
resentational Similarity Indices (RSIs) from the model coefficients to approximate
the amount of evidence for syntactic, event semantic, and (sub)lexical information in
each electrode (shown for the three sample electrodes in Fig. 2D). The syntax RSI
accurately captured the presence of syntactic information in E1, E3, and E4, and ver-
ified that E2’s higher activity for sentences than lists corresponded to the presence of
event semantics (p < .05 for 100ms, permutation test, for all three tests). Across elec-
trodes with any significant RSIs, the majority of electrodes processed only one of the
three types of information (Fig. 2E), contradicting claims of a fully interwoven system
[24, 35, 36].

Next, to investigate the relationship between degree of neural activity and syntactic
processing (or lack of such a relationship, as in Electrodes E3 and E4), we performed
a series of analyses comparing each RSI to high gamma. Note that while RSIs index
differences in high gamma activity in an electrode, such differences do not require
that the electrode exhibit a high degree of activity. This, however, is the general
assumption, and predicts that RSIs should be positively correlated with the magnitude
of high gamma activity. However, in two analyses we found no evidence that syntactic
processing was related to neural activity in this way: not across electrodes at the time
when each electrode’s RSI reaches its maximum (Fig. 2F), nor across electrodes at
each time sample (Fig. 2G). In contrast, (sub)lexical processing showed the expected
result in both analyses: a positive relationship with degree of high gamma activity at
the times when the (sub)lexical RSI peaked (p < .001, linear regression), as well as
at each time sample (p < .05 for 100ms, Spearman correlation). Intriguingly, event
semantics shared the syntactic pattern of independence from the magnitude of high
gamma activity in both analyses.

A traditional region-of-interest approach showed limited representational speci-
ficity for syntax across IFG and MFG and event-semantics in MTG and IPL (Fig. 3A),
as well as (sub)lexical information in SMC and STG (p < .05 for 100ms, permutation
test). However, testing within each electrode revealed that these representations were
widely distributed across cortex (see Fig. 3B and Supplementary Fig. S6 for beta band
activity).
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Fig. 3 (A) Mean and standard error of electrodes’ RSIs by ROI. (B) Significant electrodes (p < .05
for 100 ms; one-tailed permutation test) for all three RSIs; color and size correspond to peak RSI
value. (C) Non-negative Matrix Factorization (NMF), a matrix decomposition technique particularly
suited for identifying prototypical patterns, was used to cluster electrodes based on their concatenated
high gamma activity (trial means for the three tasks) and RSIs. (D) Clustering results. Top: electrode
localizations; color and size correspond to NMF weight. Middle: weighted mean and standard error
of high gamma for all three experimental tasks. Bottom: weighted mean and standard error of RSIs.
Bars denote significance (p < .001 for 100ms, permutation test).

Given that our findings were not confined to particular cortical hubs, we aimed to
characterize these networks without imposing anatomical assumptions on the neural
data. We took a data-driven approach using an unsupervised machine learning tech-
nique, Non-negative Matrix Factorization (NMF, see Methods 4.10). This allowed us
to cluster electrodes according to prototypical patterns in the combined high gamma
and RSI dataset (Fig. 3C), identifying 5 major clusters (Fig. 3D).

The first three clusters were characterized by high information content (RSI)
accompanied by very low high gamma activity (Clusters 1-3 in Fig. 3D), replicat-
ing the dissociation between syntax and neural activity found at the electrode level
(see Fig. 2B). Each of these three clusters was spatially distributed and contained
significant information about a single representation type – syntax, event semantics,
or (sub)lexical information (p < .05 for 100ms, permutation test). Temporally, these
profiles aligned with theoretical and computational models of sentence production,

8



according to which semantics is processed first, then syntax, and finally (sub)lexical
representations [62, 63, 77] (see Fig. 3D, bottom).

In contrast, the last two clusters were characterized by robust high gamma activ-
ity and high regional specificity, despite the fact that our unsupervised approach did
not have access to electrode locations. Cluster 4 was focused in areas associated with
visual processing and executive control, with activity peaking just after stimulus onset,
and it did not contain above-chance information about syntax, event semantics, or
(sub)lexical information (p > .05, permutation test across all time points after correc-
tion for multiple comparisons). Cluster 5 was concentrated in speech-motor cortex and
superior temporal gyrus, with activity peaking just after speech onset. It contained
above-chance information only for the (sub)lexical RSI (p < .05 for 100ms, permuta-
tion test) at the time when activity peaked, consistent with the correlation between
(sub)lexical processing and neural activity (Figs. 2F,G).

However, while syntax is often treated as a single entity, it in fact consists of
multiple processing stages [62, 63, 77]. We asked whether the syntax network we
identified might itself show evidence of these temporal stages. We clustered the syntax
RSIs from all electrodes with a significant syntax RSI (regardless of neural activity
level). This analysis revealed three subnetworks with peaks at 1062ms, 422ms, and
16ms before speech onset (Fig. 4A). The early and late clusters were informationally
selective – containing information about syntax (p < .05 for 100ms, permutation
test) but not words or event semantics. The middle cluster additionally encoded event
semantic information (p < .05 for 100ms, permutation test), suggesting a role in
mapping from semantics to syntax. We found two significant patterns in these clusters’
spatial distributions. First, we found more MFG electrodes in the early cluster (16
electrodes, or 43% of the cluster; Fig. 4B) than expected by chance (21%) based
on the distribution of the original dataset (FDR-corrected p = .012, binomial test).
Second, we looked for differences between clusters and found a significant increase
in IFG electrodes in the Late cluster relative to the Early and Middle clusters (Fig.
4C; FDR-corrected p = .040, binomial test). While IFG is commonly associated with
syntax [8–12, 14–19, 78–80], MFG is not. Some recent evidence suggests a role for
posterior MFG in higher-order language [19, 81, 82], however posterior MFG came
online primarily in our Late cluster. The highest concentration of syntax in our data
was in anterior MFG in the Early cluster. A closer analysis of the syntactic processing
timecourse (Fig. 4D) showed a rostral-caudal gradient within MFG. This observation
was statistically verified (Fig. 4E) by comparing MFG electrodes’ peak syntax RSI
times to their position along the principal axis of MFG. This finding suggests a cascade
of syntactic information from more anterior areas starting at stimulus onset to more
posterior areas just before speech onset (p = .027, linear regression).

3 Discussion

Here, we leveraged the high spatial and temporal resolution of intracranial record-
ings in order to investigate the dynamics of syntax. We showed that one of the most
common approaches, comparing sentences to lists, identified only a small fraction of
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Fig. 4 (A) Temporal clusters of electrodes with significant syntax RSIs (p < .05 for 100ms,
permutation test). Columns contain data from only electrodes in each cluster. Top row: Electrode
localizations in each of the three clusters; color and size correspond to each electrode’s peak syntax
RSI value. Middle row: Weighted mean and standard error of high gamma activity by experimental
task (weighted by NMF weights). Bottom row: Weighted mean and standard error of the three RSIs;
bars denote significance per term (p < .05 for 100ms, permutation test). (B) ROI representation by
cluster, scaled by each ROI’s representation in the original dataset (i.e., the chance distribution is
6 equal slices). MFG was significantly overrepresented in the Early cluster compared to the original
distribution (p = .012, binomial test); no other regions survived multiple comparisons corrections.
(C) Proportion of electrodes in each region of interest by cluster (error bars: 95% confidence inter-
vals, Wilson score). Comparing across clusters, there was a significant increase in IFG electrodes in
the Late cluster relative to the the Early and Middle clusters (padj. = .040, binomial test) and a
marginally significant increase in STG electrodes in the Middle cluster relative to the Early and Late
clusters (padj. = .053, binomial test). (D) Significant syntax electrodes in MFG, colored by the time
when the syntax RSI peaked (median latency from stimulus to speech was 1141ms). (E) Electrodes’
peak syntax RSI time was significantly predicted by position along the main axis of MFG (p = .027,
linear regression) (only including MFG electrodes with significant syntax RSIs). Electrode position
was calculated by projecting electrodes onto the main axis of MFG, which was the first principal
component of the y and z MNI coordinates for MFG electrodes (see arrow on brain).

electrodes that were in fact sensitive to syntax. We then used a representational sim-
ilarity approach to identify syntactic, event semantic, and (sub)lexical processing in
each electrode. In direct contradiction with one of the most widespread assumptions
in the field, we found that syntactic and event-semantic processing were uncorrelated
with the degree of neural activity measured. That is, while electrodes encoding syntax
and event semantics showed differences in activity, those differences did not system-
atically correspond to times when the overall degree of activity in the electrode was
high. This “low-activity coding” scheme explains why the sentence-list comparison
failed to identify the majority of syntactic electrodes, and has critical implications for
how the field should go about studying syntax. A clustering approach identified three
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broadly distributed networks that uniquely encoded either syntax, event semantics,
or (sub)lexical information based on neural activity and representation processing.
Lastly, temporal clustering of just syntactic information revealed three syntactic sub-
networks, and a cascade of syntactic processing through MFG over the course of
sentence planning.

The striking dissociation between syntactic processing and degree of neural activ-
ity has profound implications. It suggests a need to reassess common assumptions
about the relationship between information processing and the overall degree of neural
activity. It also highlights the danger in relying on elevated activity as an indicator for
information content. We argue for the importance of fine-grained statistical compar-
isons and of not excluding low-activity responses [e.g., 76, 83, 84, 84–88]. In terms of
experimental design, an important consequence is that sentence-list comparisons may
be misleading when it comes to identifying syntax. That is, sentence-list comparisons,
which rely on the assumption that syntactic processing elevates neural activity, will
only identify a small fraction of syntactic information – just 5% in our data (Fig. 2B).
As for why this might be the case, there are a number of possibilities. It may be related
to the nature of production, in which case our findings would not necessarily contra-
dict those of previous studies. However, another possibility is that lists do not control
for syntax as intended. While lists differ from the stimuli in these studies, previous
research shows that single words engage syntactic processing [58, 59] and that com-
prehending apparently ungrammatical sequences of words triggers syntactic analysis
[89–91], suggesting that lists might also engage syntax. Moreover, syntactic parsing
might be necessary to recognize lists as lacking syntax. If so, then a reasonable alterna-
tive hypothesis is that lists engage syntax more than sentences, as the comprehension
system struggles to identify a correct underlying parse. This would be consistent with
our finding that sentence activity was only greater than list activity in 5% of syntac-
tic electrodes. Regardless, our findings indicate that finer-grained manipulations are
necessary to understand syntax more thoroughly (see [92] for further discussion).

The question of selectivity has implications for the cognitive architecture of lan-
guage, where the degree of separation between syntax, semantics, and the lexicon is
a matter of heated debate [13, 15, 25, 45, 93–103]. While various regions have been
reported to be selective for syntax [11, 22, 27–34], recent studies taking individual sub-
ject anatomy into account have consistently failed to identify syntax selectivity in any
region. This lack of evidence has been interpreted as support for so-called “lexicalist”
models, where syntax is inextricably linked to particular words [23–25, 35–37]. But
we argue that the question of whether any regions are selective for syntax is ill-posed.
That is, the critical issue is whether syntax is dissociable from lexical and semantic
information in the brain. Given that syntax is encoded in broadly distributed networks
rather than regions, the relevant question is whether these networks are selective for
syntax. By leveraging production and a direct comparison of syntactic structures, we
show that selectivity is in fact the predominant pattern for syntax, both within syntac-
tic clusters (Fig. 4A) and at the level of individual electrodes (Fig. 2E). This finding
suggests that syntax is at some level represented independent of words and meaning.

Regarding the spatial distribution of syntax, our findings suggest a hybrid organi-
zation, with syntactic electrodes distributed across traditional language regions (Fig.
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3B), but also concentrated in IFG and MFG (Figs. 4B,C). This hybrid pattern may
explain the ongoing debate in the literature, which often considers only two possi-
bilities: broad distribution or localized hubs. Our analyses also revealed a cascade
of syntactic information from anterior to posterior MFG. Posterior MFG (pMFG),
including area 55b [104], has previously been implicated in both low-level speech-
motor planning [104–110] and high-level syntactic processing [19, 81], although the
latter is also consistent with prosodic planning [82]. Interestingly, the highest concen-
tration of syntactic information in our data was in fact in anterior MFG (aMFG), a
region not typically associated with language. In contrast to the low-level functions
of pMFG, aMFG is primarily associated with executive functions like attention [111–
114] and working memory [115, 116], and to some degree lexical semantics [117–121].
One possibility is that the unexpected sensitivity of aMFG to the active/passive dis-
tinction reflects task demands. That is, passive sentences may have been harder to
produce than actives, and signatures of this may have remained in the data despite
our efforts to control for such effects (e.g., by informing patients that there were
no right or wrong responses, temporally warping trials, and including response time
covariates). However even if this interpretation accounts for some of the electrodes
we identified as syntactic, it would only deepen the mystery of why so few electrodes
had higher activity for sentences than lists. Perhaps more so than for syntactic pro-
cessing, one would expect that regions recruited to process difficult tasks should show
elevated activity. Regardless, it remains the case that our analyses would have also
identified truly syntactic electrodes as well. Given the robustness of the lack of over-
lap between electrodes sensitive to syntax and those with higher activity for sentences
than lists, an executive function interpretation does not undermine our conclusions in
general. Another intriguing possibility, consistent with the functional and connectiv-
ity attributes of aMFG, is that MFG plays a role in syntactic planning. Specifically,
aMFG is connected via white matter tracts to several key language regions includ-
ing IFG, IPL, and posterior temporal lobe [111], supporting a role in language. Taken
together with the known role of pMFG in language, this suggests a processing pipeline
where disparate linguistic representations are integrated in anterior portions of MFG
and propagated posteriorly to generate a speech-motor plan. The production-specific
nature of this function may explain why previous research, predominantly focused on
comprehension, has overlooked MFG’s role in syntax.

Finally, our data reveal a distinction in how the brain processes different kinds
of information. While (sub)lexical processing was strongly correlated with degree of
neural activity, syntax did not show such a relationship. This distinction may belie
a deeper taxonomic generalization. That is, (sub)lexical processing is not alone: low-
level sensorimotor processes in general show a similar relationship to neural activity,
including vision [47, 48], audition [122, 123], and motor movement [124, 125]. Simi-
larly, syntax was not alone: we found that event semantic processing also showed no
systematic relationship with degree of neural activity. We hypothesize that just as low-
level information shares encoding properties, higher-order processing may in general be
encoded in low-activity neural populations. Such a divergence in coding schemes could
derive from any number of differences between low- and high-level cognitive systems,
including their spatial distribution, evolutionary age, or informational complexity.
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One possibility is that because higher-level representations are generally sustained
over longer periods of time, they require a metabolically efficient neural code. In con-
trast, lower-level representations like phonemes are relatively short-lived [126, 127],
and higher firing rates may therefore be achieved without depleting resources. Taken
together, our findings constitute a significant advance in understanding syntax in the
brain, providing evidence for widespread representational selectivity and a low-activity
coding scheme that may underlie higher-order cognition in general.

4 Methods

4.1 Participants

Ten neurosurgical patients undergoing evaluation for refractory epilepsy participated
in the experiment (3 female, mean age: 30 years, range: 20 to 45). All ten were
implanted with electrocorticographic grids and strips and provided informed con-
sent to participate. All consent was obtained in writing and then requested again
orally prior to the beginning of the experiment. Electrode implantation and location
were guided solely by clinical requirements. Eight of the participants were implanted
with standard clinical electrode grid with 10mm spaced electrodes (Ad-Tech Medi-
cal Instrument, Racine, WI). Two participants consented to a research hybrid grid
implant (PMT corporation, Chanassen, MN) that included 64 additional electrodes
between the standard clinical contacts (with overall 10mm spacing and interspersed
5mm spaced electrodes over select regions), providing denser sampling but with posi-
tioning based solely on clinical needs. The study protocol was approved by the NYU
Langone Medical Center Committee on Human Research.

4.2 Data collection and preprocessing

Participants were tested while resting in their hospital bed in the epilepsy monitoring
unit. Stimuli were presented on a laptop screen positioned at a comfortable distance
from the participant. Participants’ voice was recorded using a cardioid microphone
(Shure MX424). Inaudible TTL pulses marking the onset of a stimulus were generated
by the experiment computer, split, and recorded in auxiliary channels of both the clini-
cal Neuroworks Quantum Amplifier (Natus Biomedical, Appleton, WI), which records
ECoG, and the audio recorder (Zoom H1 Handy Recorder). The microphone signal
was also fed to both the audio recorder and the ECoG amplifier. These redundant
recordings were used to sync the speech, experiment, and neural signals.

The standard implanted ECoG arrays contained 64 macro-contacts (2mm exposed,
10mm spacing) in an 8×8 grid. Hybrid grids contained 128 electrode channels, includ-
ing the standard 64 macro-contacts and 64 additional interspersed smaller electrodes
(1 mm exposed) between the macro-contacts (providing 10mm center-to-center spac-
ing between macro-contacts and 5mm center-to-center spacing between micro/macro
contacts, PMT corporation, Chanassen, MN). The FDA-approved hybrid grids were
manufactured for research purposes, and a member of the research team explained this
to patients during consent. The ECoG arrays were implanted on the left hemisphere
for all ten participants. Placement location was solely dictated by clinical care.
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ECoG was recorded at 2,048Hz, which was decimated to 512Hz prior to processing
and analysis. After rejecting electrodes with artifacts (i.e., line noise, poor contact
with the cortex, and high amplitude shifts), we subtracted a common average reference
(across all valid electrodes and time) from each individual electrode. Electrodes with
interictal and epileptiform activity were removed from the analysis. We then extracted
the envelope of the high gamma component (the average of three log-spaced frequency
bands from 70 to 150Hz) from the raw signal with the Hilbert transform. Beta activity
was quantified as the envelope of the 12 to 30Hz band.

The signal was separately epoched locked to stimulus (i.e., cartoon images) and
production onsets for each trial. The 200ms silent period preceding stimulus onset
(during which patients were not speaking and fixating on a cross in the center of the
screen) was used as a baseline, and each epoch for each electrode was normalized to
this baseline’s mean and standard deviation (i.e., z-scored).

4.3 Experimental Design

4.3.1 Procedure

The experiment was performed in one session that lasted approximately 40 minutes.
Stimuli were presented in pseudo-random order using PsychoPy [128]. All stimuli were
constructed using the same 6 cartoon characters (chicken, dog, Dracula, Frankenstein,
ninja, nurse), chosen to vary along many dimensions (e.g., frequency, phonology, num-
ber of syllables, animacy, proper vs. common) to facilitate identification of lexical
information at analysis.

The experiment began with two familiarization blocks. In the first block (6 trials),
participants saw images of each of the six cartoon characters once with labels (chicken,
dog, Dracula, Frankenstein, ninja, nurse) written beneath the image. Participants
were instructed to read the labels aloud, after which the experimenter pressed a button
to go to the next trial. In the second block, participants saw the same six characters
one at a time, twice each in pseudo-random order (12 trials), but without labels.
They were instructed to name the characters out loud. After naming the character,
the experimenter pressed a button revealing the target name to ensure learning of the
correct labels. Participants then completed the picture naming block (96 trials). As
before, characters were presented in the center of the screen, one at a time, but no
labels were provided.

Next, participants performed a sentence production block (60 trials), starting with
two practice trials. Participants were instructed that there were no right or wrong
answers, we want to know what their brain does when they speak naturally. On each
trial, participants saw a 1 s fixation cross followed by a written question, which they
were instructed to read aloud to ensure attention. After another 1 s fixation cross, a
static cartoon vignette appeared in the center of the screen depicting two of the six
characters engaged in a transitive event. Participants were instructed to respond to
the question by describing the vignette. The image remained on the screen until the
participant completed the sentence, at which point the experimenter pressed a button
to proceed. After the first 12 trials, the target sentence (i.e., an active sentence after
an active question or passive sentence after a passive question) appeared in text on
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the screen and participants were instructed to read aloud “the sentence we expected
[them] to say” to implicitly reinforce the link between the syntax of the question and
the target response. If participants appeared to interpret these as corrections, the
experimenter reminded them that there were no right or wrong answers.

We interleaved two picture naming trials between each sentence production trial
in order to reduce task difficulty and facilitate fluent sentence production. The picture
naming trials involved the two characters that would be engaged in the subsequent
vignette, presented in a counterbalanced order such that on half of trials they would
appear in the same order as in the expected sentence response, and in the opposite
order on the other half.

Next, participants performed the listing block. List production trials were designed
to parallel sentence production trials. Each trial began with a 1 s fixation cross and
then an arrow pointing either left or right appeared for 1 s in the center of the screen.
After another 1 s fixation cross, a cartoon vignette (the exact same stimuli) appeared
on the screen. Participants named the two characters in the vignette from left to
right or from right to left, according to the direction of the preceding arrow. As in
sentence production trials, each list production trial was preceded by two picture
naming trials with the two characters that would appear in the subsequent vignette,
again in counterbalanced order.

Between each block, participants were offered the opportunity to stop the exper-
iment if they did not wish to continue. One participant stopped before the list
production block, providing only picture naming and sentence production data. The
other nine participants completed all three blocks. These nine were offered the oppor-
tunity to complete another picture naming block and another sentence production
block. Six consented to another picture naming block and two consented to another
sentence production block.

4.3.2 Stimulus Design, Randomization, and Counterbalancing

Picture naming stimuli consisted of images of the 6 characters in pseudo-random order
so that each consecutive set of 6 trials contained all 6 characters in random order.
This ensured a relatively even distribution of characters across the block, and that
no character appeared more than twice in a row. Characters were pseudorandomly
depicted facing 8 orientations: facing forward, backward, left, right, and at the 45◦

angle between each of these.
Sentence production stimuli consisted of a written question and a static cartoon

vignette. Questions were manipulated so half were constructed with passive syntax
and half with active. All questions followed the scheme: “Who is [verb]-ing whom?”
or “Who is being [verb]-ed by whom?”. There were 10 verbs: burn, hit, hypnotize,
measure, poke, scare, scrub, spray, tickle, trip. Each verb was used to create 3 vignettes
involving 3 characters, counterbalanced so each character was the agent (i.e., active
subject) in one vignette and the non-agent (i.e., active object) in one vignette. Each of
these three vignettes was shown twice in the sentence production block, once preceded
by an active question and once by a passive question to prime active and passive
responses, respectively [64]. Vignettes were flipped around the vertical axis the second
time they appeared so that the character that was on the left in the first appearance
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was on the right in the second appearance and vice versa. This was counterbalanced
so that on half of the trials in each syntax condition (active/passive) the subject was
on the left. List production stimuli similarly consisted of the same 60 vignettes, also
presented in pseudorandom order and counterbalanced across conditions (i.e., arrow
direction).

4.4 Data Coding and Inclusion

Speech was manually transcribed and word onset times were manually recorded using
Audacity [129] to visualize the audio waveform and spectrogram. Picture naming trials
were excluded if the first word uttered was not the target word (e.g., “Frankenstein –
I mean Dracula”). Sentence trials were excluded if the first word was incorrect (i.e.,
“Frankenstein” instead of “Dracula,” regardless of active/passive structure) or if the
meaning of the sentence did not match the meaning of the depicted scene; no sentences
were excluded because the syntax did not match that of the prime (i.e., question).
Sentences were coded as active/passive depending on the structure the patient used,
not the prime structure. Listing trials were excluded if the first word was incorrect or
if the order did not match that indicated by the arrow.

All patients were included in Figure 1 analyses, however three patients who pro-
duced 6 or fewer passive sentences during the sentence production block were excluded
prior to any subsequent analyses that involved an active/passive comparison (including
the RSA and NMF analyses).

4.5 Electrode Localization

Electrode localization in subject space, as well as MNI space, was based on coregister-
ing a preoperative (no electrodes) and postoperative (with electrodes) structural MRI
(in some cases, a postoperative CT was employed depending on clinical requirements)
using a rigid-body transformation. Electrodes were then projected to the surface of the
cortex (preoperative segmented surface) to correct for edema-induced shifts following
previous procedures [130] (registration to MNI space was based on a nonlinear DAR-
TEL algorithm). Based on the subject’s preoperative MRI, the automated FreeSurfer
segmentation (Destrieux) was used for labeling within-subject anatomical locations of
electrodes.

4.6 Significance testing and corrections for multiple
comparisons in time series data

Statistical tests on time series data were performed independently at each time sample,
resulting in the same number of p-values as there are samples in the time series.
To correct for multiple comparisons we follow [131, 132] and establish a conservative
criterion for significance for all time series comparisons: an uncorrected p-value that
remains below .05 for at least 100 consecutive milliseconds.
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4.7 Permutation tests for ROIs

To determine whether activity was significantly above chance for a given ROI (Figs.
1D and 3A), we randomized electrodes’ ROI labels and re-calculated ROI means 1000
times. We derived p-values by determining what proportion of these chance means
were above the real mean value at each time sample. If the p-value was less than .05
for at least 100 consecutive milliseconds (see Sec. 4.6), it was considered significant,
denoted by a bar at the bottom of the plot.

4.8 Temporal warping

Our analyses focused on the planning period – the time between stimulus and speech
onsets, when hierarchical syntactic structure is planned [11, 53, 62, 63]. The duration of
the planning period varied considerably both across and within patients, meaning that
cognitive processes become less temporally aligned across trials the farther one moves
from stimulus onset in stimulus-locked epochs or speech onset in speech-locked epochs.
This was potentially problematic for comparing syntactic structures, as passive trials
took longer to plan (median RT: 1,424ms) than active trials (median RT: 1,165ms;
p < .001, Wilcoxon rank sum test). The farther from the time lock, the more misaligned
active and passive trials would be, and the more likely significant differences would be
to reflect temporal misalignment rather than syntax.

Temporal warping reduces such misalignments [69–71, 133, 134]. Following [69],
we linearly interpolated the data in the middle of the planning period (from 150ms
post-stimulus to 150ms pre-speech) for each trial to set all trials’ planning periods to
the same duration (Supplementary Fig. S1): the global median per task (1141ms for
sentences; 801ms for lists; 758ms for words). Specifically, for each task we started by
excluding trials with outlier response times, which we defined as those in the bottom
2.5% or top 5% per participant. We then calculated the median response time per task
across participants (1,142ms for sentences, 800ms for lists, and 758ms for words),
and for each electrode and each trial, concatenated (a) the stimulus-locked data from
150ms post-stimulus to 1

2 the median reaction time with (b) the production-locked
data from− 1

2 median reaction time to 150ms pre-speech. We then linearly interpolated
this time series to the number of time samples corresponding to the median reaction
time minus 300ms (i.e., the two 150ms periods following stimulus onset and preceding
speech onset). Finally, we concatenated (a) the unwarped data leading up to 150ms
post-stimulus, (b) the warped data from the previous step, and (c) the unwarped data
starting 150ms before speech onset to form the final epochs used in the analyses in
Figs. 2, 3, and 4.

Improved temporal alignment leads to better signal-to-noise ratio, which can be
seen in higher trial means [71]. We leveraged this fact as a diagnostic for whether
temporal warping in fact improved alignment in our data. For electrodes whose mean
high gamma peaked in the warped period (between 150ms post-stimulus and 150ms
pre-speech), we compared the peak mean values in the unwarped and the warped data.
Peak values were significantly higher for the warped data than the unwarped data
(Supplementary Fig. S3) for both the sentence and list production tasks (p = .003 and
p.008 respectively, Wilcoxon signed rank tests), indicating that warping significantly
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improved temporal alignment in the data. (There was no significant difference between
peak values in the picture naming data (p = .592). This likely reflects the fact that
these trials were relatively short, with a median reaction time of just 758ms, meaning
that warping made relatively minor changes to a smaller number of time samples.)

For comparison, we reproduced Fig. 1 in Supplementary Fig. S2 using the warped
data. The results of the statistical tests in these figures were qualitatively identical:
The spatial distributions of significant electrodes were nearly identical over time (Fig.
1C and Supplementary Fig. S2C) and the same ROIs (IFG, MFG, MTG, and IPL)
showed significantly higher activity for sentences than lists during the planning period
(Fig. 1D and Supplementary Fig. S2D).

4.9 Representational Similarity Analysis (RSA) and
Representational Similarity Indices (RSIs)

To uniquely identify variance associated with syntactic, event-semantic, and
(sub)lexical processing, we used multiple linear regression to model the neural activ-
ity from each electrode and at each time sample as a linear combination of syntactic,
event-semantic, and (sub)lexical properties of the sentence the patient was plan-
ning/producing. Multiple regression is ideal in this context because it fits coefficients
(slopes/betas) that can be used to derive t-values and corresponding p-values which
reflect the unique contribution of each independent variable, effectively partitioning
variance that can be unambiguously ascribed to just one term [135].

However, event semantic and (sub)lexical representations are highly complex and
multidimensional, requiring a choice of which dimensions/features to use in a multiple
regression model. To avoid this scenario, we leveraged a Representational Similarity
Analysis-style approach and modeled pairwise differences between trials [72–75]. This
resulted in just one vector per construct representing pairwise trial differences syntax,
event semantics, and word content.

4.9.1 Linguistic and Neural Dissimilarity Models

The syntax term was binary: 1 if one trial was active and the other was passive and
0 otherwise. We modeled event-semantic representations using outputs from GPT-2’s
8th hidden layer, where embeddings correlate most highly with neural activity [136].
Specifically, for each unique stimulus vignette, we fed the corresponding sentence with
active syntax into GPT-2 and averaged the embeddings in layer 8 for all of the words in
the sentence. By inputting only active sentences (rather than a combination of actives
and passives depending on the structure of the specific trials), we ensured that the
resulting vector contains just the semantic information from the trial, not the relevant
syntactic information (i.e., whether it was active or passive).

To quantify event-semantic dissimilarity between trials, we correlated the vectors
corresponding to each pair of trials’ stimuli. Prior to modeling, correlation coefficients
(r) were centered, scaled, and multiplied by −1 so that a value of 1 corresponded
to more dissimilar meanings, and −1 meant that the two trials had the same exact
stimulus. (Each stimulus appeared twice in each sentence production block, once with
an active prime and once with a passive prime.)
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The (sub)lexical term was also binary: 1 if the first word of the two trials’ sen-
tences were different, 0 if they were the same. This encoding scheme was meant to
absorb variance associated with a host of extraneous linguistic features at the lexical
and sub-lexical levels including phonetics, phonology, articulatory/motor information,
auditory feedback, lemma-level representations, and lexical semantics (the meaning of
individual words rather than the global event meaning).

We also included differences in response time (RT) as a covariate in the model,
as this is known to index other extraneous non-linguistic features like difficulty that
might be correlated with our syntactic manipulation. This term was quantified as the
absolute value of the difference in the log of each trial’s reaction times, so that higher
values corresponded to bigger differences in reaction times.

We then modeled pairwise trial differences in neural activity (the magnitude of
the difference between z-scored high gamma activity at a given sample for a given
electrode) as a linear combination of these four dissimilarity (D) terms:

|∆γ| = β0 + β1Dsyntax + β2Dsemantics + β3D(sub)lexical + β4DRT + ϵ (1)

4.9.2 Electrode Significance

The data used in the RSA regression did not clearly meet the assumptions of standard
linear regressions: it was not clear that the residuals should be normally distributed
(high gamma activity is gamma-distributed), and imbalances in the datasets due to
trial exclusions and the varying effectiveness of priming across patients were exacer-
bated by the implementation of pairwise trial differences. To err on the side of caution,
rather than directly interpreting model statistics, we ran a permutation analysis, shuf-
fling the neural activity with respect to linguistic features in the original datasets,
reconstructing the neural dissimilarity models, and re-running the linear regression at
each time sample 1000 times.

To assess whether a given electrode was significant for the syntax, semantics,
and (sub)lexical terms, we started by calculating the t-values corresponding to the
each term’s coefficient, which corresponds to the amount of evidence against the null
hypothesis. Then we smoothed the real and shuffled t-values over time with a 100ms
boxcar function. Finally, we z-scored the real t-values by time sample and electrode
with respect to the 1000 t-values from shuffled models in the same time sample and
electrode. The resulting z-values reflect an estimate of evidence against the null that is
standardized across patients and electrodes and independent of the number of trials.
Significant electrodes for each representation were defined as those which maintained
a z-value of at least 1.645 (corresponding to a 1-tailed p-value of less than .05) for at
least 100 consecutive milliseconds.

4.9.3 Representational Similarity Indices (RSIs)

To derive RSIs, we performed additional transformations on these z-values to make
them more interpretable and conservative. First, We scaled z-scores, dividing by 2.326,
which corresponds to a p-value of .01. Consequently, values greater than 1 could be
interpreted as very likely to reflect positive results, and values less than 1 were likely
to reflect negative results. Next, to reduce the possibility of extremely high values
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having an undue influence on aggregate statistics and NMF, we applied a logarithmic
penalty to values grater than 1, replacing them with log(x) + 1. Similarly, to reduce
values more likely to correspond to negative results, we shrunk low values toward 0
by replacing values less than 1 with (ex), and then cubing the resulting values (i.e.,
(ex)3) to impose an even more severe penalty on low values. Notably, this renders
all values non-negative, naturally resolving issues related to the uninterpretability of
negative relationships in RSA [72, 137] and facilitating the use of NMF for subsequent
clustering. Finally, we re-scaled values by multiplying them by 2.326 (undoing Step
1) so that the final RSI scale more closely matched the z scale in interpretation. Like
z-scores, RSI values over 2.326 can be safely interpreted as significant at the α = .01
threshold.

4.10 Non-negative Matrix Factorization (NMF)

We used NMF to cluster electrodes according to prototypical patterns in the data
[138, 139]. In the first clustering analysis (Fig. 3), we analyzed RSIs and mean neural
activity from all three tasks for all electrodes that were either “active” (non-zero neural
activity; p < .05 for 100ms, Wilcoxon signed rank test) or inactive, but with at least
one significant RSI (p < .05 for 100ms, permutation test).

High gamma activity was in units of standard deviations (i.e., z-scores), while
RSIs were z-scores that had been smoothed and transformed to be non-negative, with
extreme values in both directions shrunk (see Section 4.9.3). To ensure that NMF
weighted the two types of information the same way, we applied the same transfor-
mation used to create the RSIs (Sec. 4.9.3) to the neural data prior to performing
NMF.

We then concatenated these three time series (i.e., mean high gamma per task) and
the three RSI time series (i.e., syntax, event semantics, and (sub)lexical), excluding
pre-stimulus time samples and those after 500ms post-speech onset. This resulted in
a matrix of dimensionality 741 (electrodes) × 4364 (time samples from 3 high gamma
and 3 RSI time series).

We fed this matrix to the nmf() function in R (NMF library v0.25 [140]) using
the Brunet algorithm [141] and 50 runs to mitigate the risk of converging on local
minima. We tried a range of model ranks: 3 to 9 for the full analysis (Fig. 4) and 2 to
7 for the syntax analysis (Fig. 4). The optimal rank (5 for the full analysis; 3 for the
syntax analysis) was determined by finding the elbow in the scree plots.
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Appendix A Supplementary Information

A.1 Data Warping

Supplementary Figs. S1, S2, and S3 show the methods and efficacy checks for our tem-
poral warping procedure (see Sec. 4.8). Supplementary Fig. S3 analyses were performed
on the maximum values of electrodes’ trial means. Prior to finding the maximum, we
took the absolute value of the trial mean to capture electrodes with negative peaks
(reflecting suppression) that might have been enhanced by warping. We included only
those electrodes that peaked during the warped period (between 150ms post-stimulus
and 150ms pre-speech), as other electrode’s maxima remained unchanged.

Fig. S1 Warped and unwarped sentence production data from a sample electrode. The data in
each trial between 150ms post stimulus and 150ms pre-speech were linearly interpolated to set the
duration of the planning period to the global median per task (1142ms for sentence production)
[69]. (A) Sample electrode localization in MFG. (B) The mean of this electrode’s warped (pink) and
unwarped (grey) trials. Prior to warping, this patient’s median sentence response time was 995ms;
after warping it was 1,141ms: the median sentence production response time across patients. The
peak of the warped data was higher than the unwarped peak, a sign that warping resulted in better
temporal alignment and consequently higher signal-to-noise ratio. (C) Three sample trials: warped
(pink) and unwarped (grey) data.
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Fig. S2 Replication of Figure 1 using warped data. Results are qualitatively identical: (C) the
spatial distribution of electrodes with significant differences between sentences and lists over time
was nearly identical and (D) both identify IFG, MFG, MTG, and IPL as having significantly higher
sentence than list activity during the planning period.
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Fig. S3 Peak high gamma activity for each electrode (dot) in the warped (red) and unwarped
(grey) data, by task. Warping resulted in significantly higher peaks for sentence production (p = .003,
Wilcoxon signed rank test) and list production (p = .008, Wilcoxon signed rank test), evidence that
it successfully improved the temporal alignment of trials [71]. No effect was found for picture naming
(p = .592).
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A.2 Analyses of Beta Activity

Supplementary Fig. S4 replicates the Figure 1 analyses but using beta activity
(12-30Hz). Beta is another important frequency band in cognition [67, 68]. In Supple-
mentary Fig. S5, we test the hypothesis that beta activity tracks syntactic processing
better than high gamma. We present three replications of the analysis in Fig. 2F
(copied in Supplementary Fig. S5A). Analyses appear in a 2 × 2 factorial design:
regressing either beta or high gamma activity over RSIs, where RSIs were derived from
RSA performed on either high gamma (left) or beta (right) activity. Across all four
sets of results, the only significant finding is that reported in the main text: a positive
relationship between mean sentence high gamma and (sub)lexical signal in the high
gamma trial activity (p < .001, linear regression).

To determine whether representational encoding in beta activity might be anatom-
ically localized more than in high gamma, we replicated the analyses in Fig. 2A,b
using beta. We analyzed the resulting “beta RSIs” by region of interest (Supplemen-
tary Fig. S6A). There was significant evidence for syntax in SMC and, as in the high
gamma data, IFG (p < .05 for 100ms, permutation test), but unlike high gamma there
was no evidence that beta activity encoded syntactic information in MFG. (Notably,
as MEG research frequently imposes a band-pass filter capped at 30Hz during data
pre-processing, this could be another reason that previous work has failed to iden-
tify the role of MFG in syntax.) We also plotted electrodes with significant beta RSIs
on cortex (Supplementary Fig. S6B), revealing distributed networks similar to those
observed in high gamma.
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Fig. S4 Replication of Figure 1 using beta activity (12-30Hz; unwarped data). (C) The distribution
of electrodes that are significantly greater for sentences than lists was largely reversed from the high
gamma activity. This likely reflects a well-documented phenomenon where activity in high gamma
is often coupled with beta suppression, leading to effects in the reverse direction in beta [142, 143].
(D) SMC, STG, and IPL show significantly higher beta activity for sentences than lists, possibly also
reflecting beta suppression corresponding to increases in high gamma during speech and auditory
feedback.

26



Fig. S5 Four attempts at uncovering a relationship between mean neural activity during sentence
production and linguistic processes. Only one significant relationship was found across all analyses:
mean high gamma activity was positively related to high gamma (sub)lexical processing (p < .001).
(A) Mean high gamma activity vs. linguistic RSIs encoded in high gamma trial activity (panel is
identical to Fig. 2F). (B) Mean high gamma activity vs. linguistic RSIs encoded in beta trial activity.
(C) Mean beta activity vs. linguistic RSIs encoded in high gamma trial activity. (D) Mean beta
activity vs. linguistic RSIs encoded in beta trial activity.

Fig. S6 Distribution of RSIs calculated from RSA on beta activity (see parallels for high gamma
in Fig. 2A,B). (A) Mean and standard error by region shows significant syntax in IFG and SMC
(p < .05 for 100ms, permutation test), but there was no evidence for syntax in MFG as there was in
the high gamma activity. (B) Significant electrodes (p < .05 for 100ms; one-tailed permutation test)
per RSI again show a broadly distributed pattern for all three RSIs, as in high gamma.
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[110] Khanna, A.R., Muñoz, W., Kim, Y.J., Kfir, Y., Paulk, A.C., Jamali, M., Cai,
J., Mustroph, M.L., Caprara, I., Hardstone, R., et al.: Single-neuronal elements
of speech production in humans. Nature 626(7999), 603–610 (2024) https://doi.
org/10.1038/s41586-023-06982-w

[111] Briggs, R.G., Lin, Y.-H., Dadario, N.B., Kim, S.J., Young, I.M., Bai, M.Y.,
Dhanaraj, V., Fonseka, R.D., Hormovas, J., Tanglay, O., et al.: Anatomy and
white matter connections of the middle frontal gyrus. World Neurosurgery 150,
520–529 (2021) https://doi.org/10.1016/j.wneu.2021.03.045

[112] Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven
attention in the brain. Nature reviews neuroscience 3(3), 201–215 (2002) https:
//doi.org/10.1038/nrn755

[113] Vossel, S., Thiel, C.M., Fink, G.R.: Cue validity modulates the neural correlates
of covert endogenous orienting of attention in parietal and frontal cortex. Neu-
roimage 32(3), 1257–1264 (2006) https://doi.org/10.1016/j.neuroimage.2006.05.
019

[114] Thiel, C.M., Zilles, K., Fink, G.R.: Cerebral correlates of alerting, orienting and
reorienting of visuospatial attention: an event-related fMRI study. Neuroimage
21(1), 318–328 (2004) https://doi.org/10.1016/j.neuroimage.2003.08.044

37

https://doi.org/10.1093/ons/opy256
https://doi.org/10.1093/ons/opy256
https://doi.org/10.3171/2020.5.JNS191281
https://doi.org/10.3171/2020.5.JNS191281
https://doi.org/10.1523/JNEUROSCI.1614-22.2022
https://doi.org/10.1523/JNEUROSCI.1614-22.2022
https://doi.org/10.1016/j.cell.2018.05.016
https://doi.org/10.1016/j.cell.2018.05.016
https://doi.org/10.3389/fneur.2021.646075
https://doi.org/10.3389/fneur.2021.646075
https://doi.org/10.1038/s41586-023-06982-w
https://doi.org/10.1038/s41586-023-06982-w
https://doi.org/10.1016/j.wneu.2021.03.045
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/j.neuroimage.2006.05.019
https://doi.org/10.1016/j.neuroimage.2006.05.019
https://doi.org/10.1016/j.neuroimage.2003.08.044


[115] Klingberg, T., O’Sullivan, B.T., Roland, P.E.: Bilateral activation of fronto-
parietal networks by incrementing demand in a working memory task. Cerebral
cortex (New York, NY: 1991) 7(5), 465–471 (1997) https://doi.org/10.1093/
cercor/7.5.465

[116] Yin, L., Reuter, M., Weber, B.: Let the man choose what to do: Neural correlates
of spontaneous lying and truth-telling. Brain and cognition 102, 13–25 (2016)
https://doi.org/10.1016/j.bandc.2015.11.007

[117] Sachs, O., Weis, S., Zellagui, N., Huber, W., Zvyagintsev, M., Mathiak, K.,
Kircher, T.: Automatic processing of semantic relations in fMRI: neural acti-
vation during semantic priming of taxonomic and thematic categories. Brain
research 1218, 194–205 (2008) https://doi.org/10.1016/j.brainres.2008.03.045

[118] Grabowski, T.J., Damasio, H., Damasio, A.R.: Premotor and prefrontal cor-
relates of category-related lexical retrieval. Neuroimage 7(3), 232–243 (1998)
https://doi.org/10.1006/nimg.1998.0324

[119] Rissman, J., Eliassen, J.C., Blumstein, S.E.: An event-related fMRI investigation
of implicit semantic priming. Journal of Cognitive Neuroscience 15(8), 1160–
1175 (2003) https://doi.org/10.1162/089892903322598120

[120] Kotz, S.A., Cappa, S.F., Cramon, D.Y., Friederici, A.D.: Modulation of the
lexical–semantic network by auditory semantic priming: An event-related func-
tional MRI study. Neuroimage 17(4), 1761–1772 (2002) https://doi.org/10.
1006/nimg.2002.1316

[121] Raposo, A., Moss, H.E., Stamatakis, E.A., Tyler, L.K.: Repetition suppres-
sion and semantic enhancement: an investigation of the neural correlates of
priming. Neuropsychologia 44(12), 2284–2295 (2006) https://doi.org/10.1016/j.
neuropsychologia.2006.05.017

[122] Ades, H.W., Felder, R.E.: The acoustic projection system: a comparative study.
Journal of Neurophysiology 8(6), 463–470 (1945)

[123] Licklider, J., Kryter, K.: Frequency localization in the auditory cortex of the
monkey. In: Fed. Proc, vol. 1, p. 51 (1942)

[124] Evarts, E.V.: Pyramidal tract activity associated with a conditioned hand
movement in the monkey. Journal of neurophysiology 29(6), 1011–1027 (1966)
https://doi.org/10.1152/jn.1966.29.6.1011

[125] Evarts, E.V.: Relation of pyramidal tract activity to force exerted during vol-
untary movement. Journal of neurophysiology 31(1), 14–27 (1968) https://doi.
org/10.1152/jn.1968.31.1.14

38

https://doi.org/10.1093/cercor/7.5.465
https://doi.org/10.1093/cercor/7.5.465
https://doi.org/10.1016/j.bandc.2015.11.007
https://doi.org/10.1016/j.brainres.2008.03.045
https://doi.org/10.1006/nimg.1998.0324
https://doi.org/10.1162/089892903322598120
https://doi.org/10.1006/nimg.2002.1316
https://doi.org/10.1006/nimg.2002.1316
https://doi.org/10.1016/j.neuropsychologia.2006.05.017
https://doi.org/10.1016/j.neuropsychologia.2006.05.017
https://doi.org/10.1152/jn.1966.29.6.1011
https://doi.org/10.1152/jn.1968.31.1.14
https://doi.org/10.1152/jn.1968.31.1.14


[126] Gwilliams, L., King, J.-R., Marantz, A., Poeppel, D.: Neural dynam-
ics of phoneme sequences reveal position-invariant code for content and
order. Nature communications 13(1), 6606 (2022) https://doi.org/10.1038/
s41467-022-34326-1

[127] Gwilliams, L., Marantz, A., Poeppel, D., King, J.-R.: Hierarchical dynamic cod-
ing coordinates speech comprehension in the brain. bioRxiv, 2024–04 (2024)
https://doi.org/10.1101/2024.04.19.590280

[128] Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo,
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